
IOSR Journal of Engineering (IOSRJEN) www.iosrjen.org

ISSN (e): 2250-3021, ISSN (p): 2278-8719

Vol. 04, Issue 03 (March. 2014), ||V1|| PP 19-22

International organization of Scientific Research 19 | P a g e

Performance Evaluation of Matrix Multiplication Using Mix

Mode Optimization Techniques And Open MP For Multi-Core

Processors

Yogesh Singh Rathore
1
, Dharminder Kumar

2

1Department of Computer Science &Engineering,Mewar University, Gangrar, Chittorgarh, Rajasthan, INDIA.
2Department of Computer Science &Engineering Guru Jambheshwar University of Science & Technology,

Hisar, Haryana, INDIA.

Abstract: - Matrix Multiplication is one of the most commonly used algorithm in many application areas like

Sonar Systems, Relational Database Management System and other applications like algebra etc. Matrix

Multiplication is quite difficult when it tends to infinity. In this paper we study and evaluate the execution time
of simple matrix multiplication and optimized matrix multiplication with OpenMP on multi-core machine with

same set of data values. Optimization techniques reduces space requirement and ensures fast execution. OpenMP

is a very well known standard that exploits parallelism in shared memory architecture. The evaluation is based

on simple execution of the algorithm that uses single thread for computation whereas the one with optimization

techniques and OpenMP with multi-threads.

Keywords: - Matrix Multiplication, Optimization techniques, Open MP, Multi-Threads.

I. INTRODUCTION
A Core of a machine is basically a unit that reads and executes a program instruction of a fixed length

called Word of that machine. It is generally of 8, 16, 32, 64 or variable length chunks of bits. The instructions of

a program tells the operation to be performed, it can be reading of data from key board, displaying of results on

display device, fetching of data from file or writing the output in a file. A single core machine executes one

instruction at a time but Multi-Core [2][3] machine supports parallelism. An Optimized code with OpenMP[1]

increases the performance. OpenMP has Directives, Environment variables and Run-Time Environment.

However the OpenMP API (Application Programming Interface) does not guarantees the improvement in

performance. In this paper an introduction of Optimizing techniques and OpenMP is given, in reference to its

declaration and use in the program. Then we will move towards various optimizing techniques for Matrix

Multiplication in reference of Multi-core Architectures [14], followed by related work. Our main concern is the

experiment and the time saved in processing of the Matrix Multiplication.

II. OPTIMIZATION TECHNIQUES
In this section we will introduce an effective combination of optimization techniques for Matrix

Multiplication. In the study we will work on the combination of induction variable substitution and loop

interchange which has been used and proven beneficial for in our case. Induction variable substitution works on

the variables whose values forms arithmetic progression and is generally expressed as a function of loop index.

It reduces number of operations inside the loop or in other words we can say it reduces the memory access

without any extra cost. Secondly loop interchange is used for automatic parallelization of loops. Loop

interchange is not beneficial in the case of serial loops.

III. OPENMP
Open MP was born in the 1990s with the objective of bringing a standard to a different directive

languages defined by community of various vendors. It supports various characteristics necessary for

parallelism in a program. OpenMP is based on the insertion of directives in the sequential source code that give

hints to run time library about the existent parallelism in the algorithm in the study. OpenMP is independent of

Platform and Operating System. OpenMP is not the part of C language. The OpenMP pragma annotation

expressing the parallel loop ”for” used in Matrix Multiplication algorithm is given as #pragma omp parallel for.

Version 3.0[4] of OpenMP includes a functional model that fills a gap with regard the ways of expressing the

parallelism in the algorithm in study. With the help of new OpenMP directives the programmer can locate the
units of independent jobs, leaving the judgment to how and when to execute them to the run-time system. This

gives the programmers a way of expressing patterns of concurrency that do not match the work sharing

constructs defined in the OpenMP2.5 specification.

Performance Evaluation of Matrix Multiplication Using Mix Mode Optimisation Techniques

International organization of Scientific Research 20 | P a g e

IV. PARALLEL MATRIX COMPUTATION
Before jumping to Parallelization [5][6][7][8][9] for Matrix-Multiplication directly, We must

understand the mechanism of matrix multiplication in brief. When two matrices are multiplied, the result will

again be a matrix. If the matrix product is somewhat like C=A * B, then the number of A’s columns needs to be
equal to B’s number of rows. A is a n * m matrix, that means A has n rows and m columns. B is a m * r matrix,

so B has m rows and r columns. m is the common subscript for both matrices. The result matrix C will become a

n * r matrix. Each element of C is defined as the scalar product of a row vector of matrix A and a column vector

of B.

V. RELATED WORK

A general purpose programming language designed for multi-threaded parallel programming is

Clik[10]. Clik is a task based programming. In Clik, the programmer is responsible for exposing the application

parallelism [11], identifying the sections of the code that can be executed in parallel. Tasks are started with the
keyword “spawn” reserve word and sync reserve word is used to wait until all previously spawned have been

completed. Clik supports recursively at task level and does not support automatic data dependence among the

tasks. So data dependence has to be controlled by the programmer with the help of sync reserve word. At

runtime the scheduler decides how to actually divide the work between processors. In recursive tasks Clik uses

stealing approach for execution of tasks. Click supports only parallel tasks and Clicks++ supports parallel loops.

OpenMP execution is opposite of that initially it supports parallel loops and the last version 3.0 supports parallel

tasks. To some extent Optimizing techniques individually are being used for speed ups execution and reducing

memory requirements for the different tasks of very small sizes only, on simple machines.

VI. EXPERIMENT
In this paper we will run matrix multiplication [12] algorithm for various sizes ranging from 500*500

to 2000*2000 on multi-core processors and evaluate the mean of the run time in seconds for every set of various

size of algorithms. Then we will implement the same process on the same sets of the sizes for matrix

multiplication with OpenMP and mixmode of various optimizing techniques that includes loop interchange, for

all combination of the loops used in the algorithm under study and induction variable substitution. We are

having 3 loops, so combination for the 3 loops may be given by 3!=3*2*1 that is equals to 6. If IJK are the loops

then combinations should be IJK, IKJ, JIK, JKI, KIJ and KIJ. Again we will try to read the run-time in seconds

for all combinations. The time header file of C is very helpful for computation of execution time for sample

code. The core loop computation for matrix multiplication code is given below:

#include<iostream>
#include<time.h>

#include<omp.h>

using namespace std;

int main(){…….

clock_t t1,t2,t;

……………

t1=clock();

#pragma omp for schedule(static,chunk);

for(i=0;i<n;i++){

for(j=0;j<n;j++){
c[i][j]=0;

for(k=0;k<n;k++){

c[i][j]+=a[i][k]*b[k][j];

 }

 }

 }

t2=clock();

t=t2-t1;

cout<<"time taken "<<t;

return 0;

}

Performance Evaluation of Matrix Multiplication Using Mix Mode Optimisation Techniques

International organization of Scientific Research 21 | P a g e

In the above code clock function has been used for getting time, for which time header file has been

added as a preprocessor directive. The time t received will be divided by the suitable value to get the time in

seconds. Similarly OpenMP for chunk’s reading and multiplication is being used.

VII. PERFORMANCE RESULTS:-
In the fig.: VII.1 execution time for algorithm after implementing all possible combinations of loop

interchange and substitution has been studied. Execution time has been taken in seconds and the various sizes

have been also taken. The Fig.:VII.2 compares the average of the values taken for all combinations with the

result of simple execution of Matrix Multiplication.

For loop

IJK

For loop

IJK

For loop

JIK

For loop

JKI

For loop

KIJ

For loop

KJI

500 1.17 1.34 1.18 1.21 1.16 1.11

700 3.45 3.63 3.59 3.63 3.69 3.36

1000 11.99 12.01 11.93 12.08 11.97 11.93

1200 18.69 19.73 19.42 19.41 19.10 19.42

2000 87.55 88.89 86.67 86.53 87.86 88.69

Figure VII.1

Av. of

optum.

For loop

IJK(plane)

500 1.20 1.54

700 3.56 4.27

1000 11.99 12.6

1200 19.30 24.4

2000 87.70 156

Figure VII.2

The use of OpenMP with the mixmode optimizing technique accelerates the computation of matrix

multiplication as shown in fig.: VII.3. In the fig.: VII.3 computation time for running the algorithm with and

without OpenMP plus optimizing techniques are taken along y-axis and various sizes of Matrix is taken along

X-axis. It is very clear that the time saved in execution is large and it increases with the increase in the size of

matrix. Ultimately we can say that for a matrix of 2000 X 2000 we can save half up to half of the time by using

OpenMP and mixmode optimizing techniques. With the use of OpenMP you can set any number of threads to an
algorithm depending upon the no of cores, the machine is having. If you set a single thread to be on a multi-core

machine still it performs better than the serial computation on a single core machine. If your number of threads

is equal no of cores it is the best parallelism achieved. If you increase the number of threads more than the

number of cores in a machine still the performance of execution of algorithm shows better results, but the

computation is done in the combination of serial and parallel.

Figure VII.3

Performance Evaluation of Matrix Multiplication Using Mix Mode Optimisation Techniques

International organization of Scientific Research 22 | P a g e

VIII. CONCLUSIONS AND FUTURE WORK
If the input size of an algorithm in study increases the difference between the time taken for execution

of an algorithm with OpenMP plus optimizing techniques and without OpenMP increases. As far as the matrix

multiplication is concerned some new hybrid technique should be developed for better results that can exploit
the system at L1, L2 and L3 cache level.

REFERENCES
[1] COMPUNITY. The community of OpenMP users, researchers, tool developers and provider website.

http://www.compunity.org/, 2006.

[2] L. Hammond, B. A. Nayfeh, and K. Olukotun,”A single-chip multiprocessor,” Computer, Vol.30, no.9,

pp. 79-85, 1997.

[3] A. Jerraya, H. Tenhunen, and W. Wolf,”Guest editors’ introduction: Multiprocessor systems-on-chip,”

Computer, vol38, no. 7. pp. 36-40, July 2005.
[4] E. Ayguade. N. Copty. A. Duran, J. Hoeflinger, Y. Lin, and G. Zhang. A proposal for task parallelism in

OpenMP. In proceedings of the 3rd international workshop on OpenMP, June 2006.

[5] H. Zhong, S. A. Lieberman, and S. A. Mahlke, “ Extending multicore Architecture to exploit hybrid

parallelism in single thread applications,” hpca, vol. o, pp. 25-36, 2007.

[6] W. J. Dally and S. Lacy, “VLSI architecture: Past, present, and future,” in ARVLSI ’99:Proceedings of

the 20th Anniversary Conference on Advanced research in VLSI. Washington, DC, USA: IEEE Computer

Society, 1999, p.232.

[7] S. Kumar, C. J. Hughes, and A. Nguyen, “Carbon: architectural support for fine-grained parallelism

on chip multiprocessors,” in ISCA ’07: Proceedings of the 34th annual international symposium

on computer architecture. New York, NY, USA: ACM, 2007, pp. 162-173.

[8] K. Bousias. N. Hasasneh, and C. Jesshope,”instruction level parallelism through micro threading- a

scalable approach to chip multiprocessors,” Comput. J., vol. 49, no. 2, pp. 211-233, 2006.
[9] A. Rodrigues. R. Murphy, P. Kogge, and K Underwood, “Characterising a new class of threads in

scientific applications for high end super computers,” in ICS ’04: proceedings of the 18th annual

international conference on super computing. New York, NY, USA:ACM,2004, pp. 164-174.

[10] M. Frigo, C. E. Leiserson, and K. H. Randall. The implementation of the Clik-5 multithreaded language.

SIGPLAN Notices, 33(5):212-223, 1998.

[11] A. Buluc, J.R. Gilbert,” Challenges and advances in parallel sparce Matrix-Matrix Multiplication”, in

proceedings of37th international conference on p[arallel processing ICPP’08, Portland, Sept 2008.

[12] P. Alonso, R. Reddy, A. Lastovetsky, “Experimental study of six different implementations of parallel

Matrix Multiplications on Hetrogenous Computational Clusters of Multi-core processors” in

proceedings of parallel, Distributed and Network Based processing(PDP), Pisa, Feb. 2010.

[13] S. Ohshima, K. Kise, T. Katagiri and T. Yuba, “Parallel Processing of Matrix Multiplication in a CPU
and GPU Heterogeneous Environment”, High Performance Computing for Computational Sciences-

VECPAR, 2006.

[14] P. F. Gorder, Multi-Core processors for science and engineering, Computing in Science and Engg.

9(2)(2007)3-7.doi:http:dx.doi.org.10.1109/MCSE. 2007.35

http://www.compunity.org/

